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1
EXTRACTION OF SOLUBLES FROM PLANT
BIOMASS FOR USE AS MICROBIAL
GROWTH STIMULANT AND METHODS
RELATED THERETO

This application is a continuation-in-part of U.S. patent
application Ser. No. 11/897,119 filed Aug. 29, 2007 now
abandoned, which is incorporated by reference herein its
entirety. This application is also a continuation-in-part of U.S.
patent application Ser. No. 12/226,850 filed Jun. 22, 2009
now abandoned, which is a U.S. National Stage filing under
35 U.S.C. 371 from International Application No. PCT/
US2007/010410 filed Apr. 30, 2007 and published in English
as WO 2008/020901 on Feb. 21, 2008 (hereinafter
“’020901”), which claims priority under 35 U.S.C. 119(e) to
U.S. Provisional Patent Application Ser. No. 60/796,401 filed
May 1, 2006, which applications and publications are hereby
incorporated herein by reference in their entireties.

STATEMENT OF GOVERNMENT RIGHTS

This invention was made with government support under
DE-FC02-07ER64494 and DE-FG36-04G014220 awarded
by the U.S. Department of Energy. The government has cer-
tain rights in the invention.

BACKGROUND

Cellulosic biomass can be used for the production of vari-
ous products. However, many conventional methods are very
expensive, requiring high capital expenditures, such as for
high pressure reactors and large amounts of additives.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph showing the effect of extraction tempera-
ture on protein yields in embodiments of the present inven-
tion. All extractions were done with 3% ammonium hydrox-
ide at pH=10.5 after an AFEX™ (hereinafter “AFEX”)
treatment. The results were combined after two (2) separate
extractions using 11:1 liquid/solid ratio and 3 minute resi-
dence time. All runs were done in duplicate and error bars
represent the maximum and minimum values.

FIG. 2 is a graph showing the effect of ammonia concen-
tration on protein yields in embodiments of the present inven-
tion. All extractions were done at 50° C. and at pH=10.5 after
an AFEX treatment. The results are combined after two (2)
separate extractions using 11:1 liquid/solid ratio and 3 minute
residence time. All runs were done in duplicate and error bars
represent the maximum and minimum values.

FIG. 3 is a graph showing the effect of extraction pH on
protein yields in embodiments of the present invention. All
extractions were done with 3% ammonium hydroxide and at
25°C. The results are combined after two (2) separate extrac-
tions using 11:1 liquid/solid ratio and 3 minute residence
time. All runs were done in duplicate and error bars represent
the maximum and minimum values.

FIG. 4 is a graph showing effect of reducing agents on
protein yields for untreated and AFEX treated samples in
embodiments of the present invention. All extractions were
done with 3% ammonia by weight, 25° C., and at pH=10.5.
The results are combined after two (2) separate extractions
using 11:1 liquid/solid ratio and 30 minute residence time.
Both the ionic sodium dodecyl sulfate (SDS) and the nonionic
Tween 80 (Tw80) surfactants were tested, both with and
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without the addition of p-mercaptoethanol. All runs were
done in duplicate and error bars represent the maximum and
minimum values.

FIG. 5 is a graph showing amino acid profiles for untreated
protein extract, AFEX treated protein extract, and the native
switch grass protein in embodiments of the present invention.

FIG. 6A is aprocess flow diagram for AFEX treatment with
extraction prior to hydrolysis in embodiments of the present
invention. Balances around the protein and ash content are
given, as well as total mass and the amount of glucose and
xylose produced.

FIG. 6B is a process flow diagram for AFEX treatment with
extraction after hydrolysis in embodiments of the present
invention. Balances around the protein and ash content are
given, as well as total mass and the amount of glucose and
xylose produced.

FIG. 7 is a flow chart for the use of the proteins and/or the
microbial growth stimulant solution (pretreatment) in a fer-
mentation process in embodiments of the present invention.
BM is biomass, SG is Switch grass and DDG is Distillers
Dried Grain.

FIG. 8 shows enzymatic hydrolysis at 1.0% cellulose load-
ing AFEX-CS using 1:6 diluted broth from Trichoderma
reesei (hereinafter “T. reesei”) fermentation in embodiments
of the present invention.

FIG. 9 shows a comparison of two induction mixture in
term of their effectiveness on enzyme production and
hydrolysis yield in embodiments of the present invention.

FIG. 10 shows a Proposed Integrated Cellulosic Ethanol
Production with In-house Enzyme Production Utilizing Bio-
mass as the Exclusive Source for Carbohydrates in embodi-
ments of the present invention.

FIGS. 11A and 11B show (A) 6.0% cellulose loading sol-
ids and loading enzymatic hydrolysis and (b) AFEX and
enzymatic hydrolysis in embodiments of the present inven-
tion.

FIG. 12 shows a chart of total protein and free AA for
various constituents in embodiments of the present invention.

FIG. 13 shows trace element and vitamin content of AFEX -
corn stover hydrolysate at 18% solids loading in an embodi-
ment of the present invention.

FIGS. 14A and 14B show (A) a core bioprocessing and
bioconversions which includes enzyme production and (B) a
subsequent fermentation step in embodiments of the present
invention.

FIG. 15 shows in-house enzyme production using AFEX-
pretreated corn stover in an embodiment of the present inven-
tion.

FIG. 16 provides relevant conclusions pertinent to one or
more of FIGS. 11A,11B, 12,13, 14A, 14B and 15 in embodi-
ment of the present invention.

FIG. 17A shows a first portion of an exemplary fermenta-
tion process in an embodiment of the present invention.

FIG. 17B shows a second portion of an exemplary fermen-
tation process in an embodiment of the present invention.

FIG. 18 shows a graph of xylose concentration over time in
embodiments of the present invention.

FIG. 19 provides relevant conclusions pertinent to one or
more of FIGS. 17A, 17B and 18 in embodiments of the
present invention.

FIG. 20A shows a comparison cost/revenue study in an
embodiment of the present invention.

FIG. 20B shows a sensitivity analysis in an embodiment of
the present invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
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ings, which form a part hereof, and in which is shown by way
of illustration specific preferred embodiments in which the
invention may be practiced. These embodiments are
described in sufficient detail to enable those skilled in the art
to practice the invention, and it is to be understood that other
embodiments may be utilized and that chemical, procedural
and other changes may be made without departing from the
spirit and scope of the present invention. The following
detailed description is, therefore, not to be taken in a limiting
sense, and the scope of the present invention is defined only
by the appended claims, along with the full scope of equiva-
lents to which such claims are entitled.

The Detailed Description that follows begins with a defi-
nition section followed by a brief overview of current tech-
nologies for production of commercial products from cellu-
losic-based biomass, a description of the embodiments, an
example section and a brief conclusion.

The term “biomass™ as used herein, refers in general to
organic matter harvested or collected from a renewable bio-
logical resource as a source of energy. The renewable biologi-
cal resource can include plant materials, animal materials,
and/or materials produced biologically. The term “biomass”
is not considered to include fossil fuels, which are not renew-
able.

The term “plant biomass” or “ligno-cellulosic biomass™ as
used herein, is intended to refer to virtually any plant-derived
organic matter (woody or non-woody) available for energy on
a sustainable basis. Plant biomass can include, but is not
limited to, agricultural crop wastes and residues such as corn
stover, wheat straw, rice straw, sugar cane bagasse and the
like. Plant biomass further includes, but is not limited to,
woody energy crops, wood wastes and residues such as trees,
including fruit trees, such as fruit-bearing trees, (e.g., apple
trees, orange trees, and the like), softwood forest thinnings,
barky wastes, sawdust, paper and pulp industry waste
streams, wood fiber, and the like. Additionally grass crops,
such as various prairie grasses, including prairie cord grass,
switchgrass, big bluestem, little bluestem, side oats grama,
and the like, have potential to be produced large-scale as
additional plant biomass sources. For urban areas, potential
plant biomass feedstock includes yard waste (e.g., grass clip-
pings, leaves, tree clippings, brush, etc.) and vegetable pro-
cessing waste. Plant biomass is known to be the most preva-
lent form of carbohydrate available in nature and corn stover
is currently the largest source of readily available plant bio-
mass in the United States.

The term “biofuel” as used herein, refers to any renewable
solid, liquid or gaseous fuel produced biologically, for
example, those derived from biomass. Most biofuels are
originally derived from biological processes such as the pho-
tosynthesis process and can therefore be considered a solar or
chemical energy source. Other biofuels, such as natural poly-
mers (e.g., chitin or certain sources of microbial cellulose),
are not synthesized during photosynthesis, but can nonethe-
less be considered a biofuel because they are biodegradable.
There are generally considered to be three types of biofuels
derived from biomass synthesized during photosynthesis,
namely, agricultural biofuels (defined below), municipal
waste biofuels (residential and light commercial garbage or
refuse, with most of the recyclable materials such as glass and
metal removed) and forestry biofuels (e.g., trees, waste or
byproduct streams from wood products, wood fiber, pulp and
paper industries). Biofuels produced from biomass not syn-
thesized during photosynthesis include, but are not limited to,
those derived from chitin, which is a chemically modified
form of cellulose known as an N-acetyl glucosamine poly-
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mer. Chitin is a significant component of the waste produced
by the aquaculture industry because it comprises the shells of
seafood.

The term “agricultural biofuel”, as used herein, refers to a
biofuel derived from agricultural crops (e.g., grains, such as
corn), crop residues, grain processing facility wastes (e.g.,
wheat/oat hulls, corn/bean fines, out-of-specification materi-
als, etc.), livestock production facility waste (e.g., manure,
carcasses, etc.), livestock processing facility waste (e.g.,
undesirable parts, cleansing streams, contaminated materials,
etc.), food processing facility waste (e.g., separated waste
streams such as grease, fat, stems, shells, intermediate pro-
cess residue, rinse/cleansing streams, etc.), value-added agri-
cultural facility byproducts (e.g., distiller’s wet grain (DWG)
and syrup from ethanol production facilities, etc.), and the
like. Examples of livestock industries include, but are not
limited to, beef, pork, turkey, chicken, egg and dairy facilities.
Examples of agricultural crops include, but are not limited to,
any type of non-woody plant (e.g., cotton), grains such as
corn, wheat, soybeans, sorghum, barley, oats, rye, and the
like, herbs (e.g., peanuts), short rotation herbaceous crops
such as switchgrass, alfalfa, and so forth.

The term “pretreatment step” as used herein, refers to any
step intended to alter native biomass so it can be more effi-
ciently and economically converted to reactive intermediate
chemical compounds such as sugars, organic acids, etc.,
which can then be further processed to a variety of value
added products such a value-added chemical, such as ethanol.
Pretreatment can reduce the degree of crystallinity of a poly-
meric substrate, reduce the interference of lignin with biom-
ass conversion and prehydrolyze some of the structural car-
bohydrates, thus increasing their enzymatic digestibility and
accelerating the degradation of biomass to useful products.
Pretreatment methods can utilize acids of varying concentra-
tions (including sulfuric acids, hydrochloric acids, organic
acids, etc.) and/or other components such as ammonia,
ammonium, lime, and the like. Pretreatment methods can
additionally or alternatively utilize hydrothermal treatments
including water, heat, steam or pressurized steam. Pretreat-
ment can occur or be deployed in various types of containers,
reactors, pipes, flow through cells and the like. Most pretreat-
ment methods will cause the partial or full solubilization
and/or destabilization of lignin and/or hydrolysis of hemicel-
Iulose to pentose sugars.

The term “moisture content™ as used herein, refers to per-
cent moisture of biomass. The moisture content is calculated
as grams of water per gram of wet biomass (biomass dry
matter plus water) times 100%.

The term “Ammonia Fiber Explosion” or “Ammonia Fiber
Expansion” (hereinafter “AFEX”) pretreatment” as used
herein, refers to a process for pretreating biomass with ammo-
nia to solubilize lignin and redeposit it from in between plant
cell walls to the surface of the biomass. An AFEX pretreat-
ment disrupts the lignocellulosic matrix, thus modifying the
structure of lignin, partially hydrolyzing hemicellulose, and
increasing the accessibility of cellulose and the remaining
hemicellulose to subsequent enzymatic degradation. Lignin
is the primary impediment to enzymatic hydrolysis of native
biomass, and removal or transformation of lignin is a sus-
pected mechanism of several of the leading pretreatment
technologies, including AFEX. However in contrast to many
other pretreatments, the lower temperatures and non-acidic
conditions of the AFEX process prevents lignin from being
converted into furfural, hydroxymethyl furfural, and organic
acids that could negatively affect microbial activity. The pro-
cess further expands and swells cellulose fibers and further
breaks up amorphous hemicellulose in lignocellulosic biom-
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ass. These structural changes open up the plant cell wall
structure enabling more efficient and complete conversion of
lignocellulosic biomass to value-added products while pre-
serving the nutrient value and composition of the material.
See, for example, the methods described in U.S. Pat. Nos.
6,106,888,7,187,176, 5,037,663, and 4,600,590, all of which
are hereby incorporated by reference in their entirety as if
fully set forth herein.

Nearly all forms of lignocellulosic biomass, i.e., plant bio-
mass, such as monocots, comprise three primary chemical
fractions: hemicellulose, cellulose, and lignin. Hemicellulose
is a polymer of short, highly-branched chains of mostly five-
carbon pentose sugars (xylose and arabinose), and to a lesser
extent six-carbon hexose sugars (galactose, glucose and man-
nose). Dicots, on the other hand, have a high content of
pectate and/or pectin, which is a polymer of alpha-linked
glucuronic acid. Pectate may be “decorated” with mannose or
rhamnose sugars, also). These sugars are highly substituted
with acetic acid.

Because of its branched structure, hemicellulose is amor-
phous and relatively easy to hydrolyze (breakdown or cleave)
to its individual constituent sugars by enzyme or dilute acid
treatment. Cellulose is a linear polymer of glucose sugars,
much like starch, which is the primary substrate of corn grain
in dry grain and wet mill ethanol plants. However, unlike
starch, the glucose sugars of cellulose are strung together by
p-glycosidic linkages which allow cellulose to form closely-
associated linear chains. Because of the high degree of hydro-
gen bonding that can occur between cellulose chains, cellu-
lose forms a rigid crystalline structure that is highly stable and
much more resistant to hydrolysis by chemical or enzymatic
attack than starch or hemicellulose polymers. Lignin, which
is a polymer of phenolic molecules, provides structural integ-
rity to plants, and remains as residual material after the sugars
in plant biomass have been fermented to ethanol. Lignin is a
by-product of alcohol production and is considered a pre-
mium quality solid fuel because of its zero sulfur content and
heating value, which is near that of sub-bituminous coal.

Typically, cellulose makes up 30 to 50% of residues from
agricultural, municipal, and forestry sources. Cellulose is
more difficult to hydrolyze than hemicellulose, but, once
hydrolyzed, converts more efficiently into ethanol with glu-
cose fermentation than hemicellulose. In contrast, the sugar
polymers of hemicellulose are relatively easy to hydrolyze,
but do not convert as efficiently as cellulose using standard
fermentation strains (which produce ethanol from glucose).
Although hemicellulose sugars represent the “low-hanging”
fruit for conversion to ethanol, the substantially higher con-
tent of cellulose represents the greater potential for maximiz-
ing alcohol yields, such as ethanol, on a per ton basis of plant
biomass.

Conventional methods used to convert biomass to alcohol
include processes employing a concentrated acid hydrolysis
pretreatment, a two-stage acid hydrolysis pretreatment as
well as processes employing any known conventional pre-
treatment, such as hydrothermal or chemical pretreatments,
followed by an enzymatic hydrolysis (i.e., enzyme-catalyzed
hydrolysis) or simultaneous enzymatic hydrolysis and sac-
charification. Such pretreatment methods can include, but are
not limited to, dilute acid hydrolysis, high pressure hot water-
based methods, i.e., hydrothermal treatments such as steam
explosion and aqueous hot water extraction, reactor systems
(e.g., batch, continuous flow, counter-flow, flow-through, and
the like), AFEX, ammonia recycled percolation (ARP), lime
treatment and a pH-based treatment. However, pretreatment-
hydrolysis of plant biomass can often result in the creation
and release of other chemicals that inhibit microbial fermen-
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tation. These inhibitors (i.e. furfural) are largely the product
of sugar degradation, and methods to remove these inhibitors
or to reduce their formation or strains resistant to the inhibi-
tors are needed.

Several of these methods generate nearly complete
hydrolysis of the hemicellulose fraction to efficiently recover
high yields of the soluble pentose sugars. However, chemical
solubilization of hemicellulose also produces toxic products,
such as furan derivatives, which can inhibit downstream
microbial reactions (e.g., fermentation). Regardless, the
hydrolysis of hemicellulose facilitates the physical removal
of the surrounding hemicellulose and lignin, thus exposing
the cellulose to later processing. However, most, if not all,
pretreatment approaches do not significantly hydrolyze the
cellulose fraction of biomass.

Biomass conversion to alcohol also poses unique fermen-
tation considerations. The Saccharomyces cerevisiae yeast
strains used in conventional corn ethanol plants for example,
can ferment glucose, but cannot ferment pentose sugars such
as xylose. Additionally, there is currently no naturally occur-
ring microorganism that can effectively convert all the major
sugars present in plant biomass to ethanol. Therefore, geneti-
cally engineered yeast or bacteria, which can, in theory, fer-
ment both glucose and xylose to alcohol, are being used for
biomass to alcohol processes. However, in practice, co-fer-
mentation is inefficient and glucose fermentation is still the
main reaction for ethanol production. Furthermore, geneti-
cally-enhanced recombinant strains of fermentative microor-
ganisms, including recombinant strains of yeast, bacteria and
fungi, as well as transgenic nucleic acids (DNA, RNA)
derived from such component may pose environmental dis-
posal and permitting problems.

Growing concerns about the environmental, political, and
economic impact of oil use have spurred renewed interest in
alternative fuels for transportation. Ethanol derived from cel-
Iulosic feedstocks such as agricultural waste, wood chips,
municipal waste, or forages is one particularly attractive alter-
native because it is domestically available, renewable, and
can potentially reduce greenhouse gas emissions (1).

Switch grass (Panicum vergatum) is a model herbaceous
energy crop, and is attractive as a feedstock due to several
favorable characteristics: high crop yields, low soil erosion,
low water, fertilizer and pesticide requirements, ability to
sequester carbon, and high genetic variability (2-3). In order
to ferment the carbohydrates in cellulosic feedstocks into
ethanol, they must first be broken down into their component
sugars. However, yields from enzymatic hydrolysis are low
unless the biomass first undergoes a pretreatment process,
such as the AFEX process described herein.

Although the structural carbohydrates in lignocellulosic
feedstocks are the largest component in plant biomass, sev-
eral other components are present as well, which can pro-
vided added value. In particular, proteins are a potentially
valuable co-product which can be separated from the rest of
the biomass and sold as animal feed or other value added
products. Such a process could have numerous benefits,
including potentially decreasing the cost of producing etha-
nol. Greene et al. estimate that extracting proteins from
switch grass in a mature biorefinery could reduce the selling
price of ethanol by nearly 20%. Furthermore, an acre of
switch grass can produce at least as much protein as an acre of
soybean, providing the opportunity to replace soy acreage
with switch grass, and thereby increasing the total amount of
biofuels able to be produced in the United States without
reducing the capacity to produce animal feed.

Industrial microbial processes (“fermentations”) require a
mixture of nutrients to support microbial growth and product
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formation. These nutrient mixtures are generally termed
“Microbial Growth Stimulants” (MGS). Corn Steep Liquor
(CSL) from corn milling processes is one such microbial
growth stimulant. The expected significant increase in fer-
mentation processes to produce fuels and chemicals from
plant matter will require a similar increase in volume of
growth stimulants used.

Microbial growth supplements such as Corn Steep Liquor
(CSL) produced from corn kernel (grain) processing byprod-
ucts are well known and have proven very valuable in increas-
ing the rate and yield of fermentation products, including
pharmaceutical products such as penicillin and fuels such as
ethanol. However, such supplements are relatively costly and
will likely become even more costly in the future.

The inventors recognize the need for improved and more
economical Microbial Growth Stimulants (MGSs) derived
from herbaceous biomass rather than from Corn Steep Liquor
(CSL). These novel MGSs described herein can compete in
all types of fermentation industries, as well as in animal feed
rations. In one embodiment, a process for producing a Micro-
bial Growth Stimulant (MGS) solution from an Ammonia
Fiber Expansion (AFEX) process pretreated plant biomass is
provided. The process uses a relatively dilute ammonium
hydroxide solution to extract the proteins from the plant bio-
mass which after removal of at least some of the proteins
becomes the microbial growth stimulant solution. In one
embodiment, the process is part of a process for extracting
and hydrolyzing extracted sugar precursors (carbohydrates)
from the plant biomass which are hydrolyzed into sugars
which are used in a fermentation to produce ethanol.

In one embodiment, a process for the production of novel
MGS’s is provided. In one embodiment, the process enables
the production of the MGS’s along with efficient extraction of
proteins from a plant biomass and sugar precursors (carbo-
hydrates) used for production of ethanol. Embodiments of the
present invention relate to a process for producing a microbial
growth stimulant solution (MGSs) from a lignocellulosic
plant biomass comprising: (a) providing a harvested ligno-
cellulosic plant biomass; (b) treating the plant biomass with
an Ammonia Fiber Expansion (AFEX) process to provide a
treated plant biomass; (c) extracting proteins in the treated
plant biomass with an aqueous alkaline ammonium hydrox-
ide solution comprising up to about 3% by weight NH,OH to
provide the extracted proteins in the solution; and (d) sepa-
rating at least some of the proteins and part of the ammonia
from the solution to thereby produce a microbial growth
stimulant solution. In one embodiment, the plant is a mono-
cot, such as wheat, rice, maize or switchgrass, although the
invention is not so limited.

In one embodiment, the pH in step (c) is above about 8 and
the proteins are separated from the solution by precipitation
or ultrafiltration. In one embodiment, the extracting of the
proteins in step (c) is after a hydrolysis step in the plant
biomass, after step (b), to produce sugars from sugar precur-
sors in the biomass. In an alternative embodiment, the extract-
ing of the proteins in step (c) is before a hydrolysis step in the
plant biomass, after step (b), to produce sugars from sugar
precursors in the biomass and optionally in addition extract-
ing after the hydrolysis step.

Embodiments of the present invention also relate to a pro-
cess for producing a microbial growth stimulant solution
from a lignocellulosic plant biomass comprising: (a) provid-
ing a harvested lignocellulosic plant biomass; (b) treating the
plant biomass with an Ammonia Fiber Expansion (AFEX)
process to provide a treated plant biomass; (c) soaking the
treated plant biomass in an alkaline aqueous solution of
ammonium hydroxide at 25° to 70° C. to provide a soaked
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plant biomass in the solution; (d) extracting the solution from
the soaked plant biomass in step (c); (e) separating at least
some of the crude proteins and ammonia from the solution of
step (d) from the plant biomass; and (f) retaining the solution
as the microbial growth stimulant solution. Further still, a pH
in step (c) is above about 8. Still further, the proteins are
separated from the solution in step (e) by precipitation or
ultrafiltration. Further still, the proteins are separated in step
(e) after a hydrolysis step in the plant biomass, after step (b),
to produce sugars from carbohydrates in the biomass. Finally,
the proteins are separated in step (e) before a hydrolysis step
in the biomass, after step (b), to produce sugars from carbo-
hydrates in the biomass and optionally in addition extracted
after the hydrolysis step.

As discussed in 020901, proteins from lignocellulosic
biomass, such as grasses, can provide an economic benefit to
biorefineries by providing a valuable co-product to ethanol
processing. In the embodiments discussed herein, a process
for extracting these proteins in line before the ethanol pro-
duction, and after a pretreatment, such as an Ammonia Fiber
Explosion Expansion (AFEX) pretreatment, is provided. The
grasses are, in particular, extracted with a relatively dilute
aqueous ammonium hydroxide solution. The extract can
undergo enzymatic hydrolysis to convert its cellulose and
hemicellulose to simple sugars before or after the removal of
the proteins. After hydrolysis, the proteins released during
this step are separated from the sugars by any suitable type of
membrane filtration, such as ultrafiltration or precipitation,
although the invention is not so limited. The remaining solid
residue can undergo a simulated crossflow extraction using an
aqueous ammonia solution as the solvent, where the remain-
ing protein is recovered. This process can remove up to 99%
of the protein from the biomass, indicating a high yield is
attainable. The ammonia used can be recycled into the AFEX
process. The protein extract is sold as animal feed or recycled
back into hydrolysis. As indicated in this application, the
solution remaining after the protein extraction is an MGS.

As noted herein, the growth stimulant is produced as a
result of protein extraction. In one embodiment, a process for
extracting plant proteins from a lignocellulosic plant biomass
is provided, comprising: (a) providing a harvested lignocel-
Iulosic plant biomass; (b) treating the plant biomass with an
Ammonia Fiber Expansion (AFEX) process to provide a
treated plant biomass; and (c) extracting proteins in the
treated plant biomass with an aqueous alkaline ammonium
hydroxide solution comprising up to about 3% by weight
NH,OH to provide the extracted proteins in the solution. In
one embodiment, the pH is above about 8. Further still, the
proteins can be separated from the solution by precipitation or
ultrafiltration. Further, the extracting is after a hydrolysis step
in the plant biomass, after step (b), to produce sugars from
sugar precursors in the biomass. Still further, the extracting of
the proteins is before a hydrolysis step in the plant biomass,
after step (b), to produce sugars from sugar precursors in the
biomass and optionally in addition after the hydrolysis step.

In another embodiment, a process for isolating plant pro-
teins from a lignocellulosic plant biomass, is provided, com-
prising: (a) providing a harvested lignocellulosic plant biom-
ass; (b) treating the plant biomass with an Ammonia Fiber
Expansion (AFEX) process to provide a treated plant biom-
ass; (¢) soaking the treated plant biomass in an alkaline aque-
ous solution of ammonium hydroxide at 25° to 70° C. to
provide a soaked plant biomass in the solution; (d) extracting
the solution from the soaked plant biomass in step (c); and (e)
separating crude proteins from the solution of step (d) so as to
provide isolated plant proteins from the plant biomass. In one
embodiment, the pH is above about 8. Still further, the pro-
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teins are separated from the solution by precipitation or ultra-
filtration. Further still, the proteins are separated after a
hydrolysis step in the plant biomass, after step (b), to produce
sugars from structural carbohydrates in the biomass. Finally,
preferably the proteins are separated before a hydrolysis step
in the biomass, after step (b), to produce sugars from struc-
tural carbohydrates and optionally in addition after the
hydrolysis step.

In another embodiment, the proteins are extracted with an
aqueous ammonium hydroxide solution. As with the dilute
aqueous ammonium hydroxide solution, the extract can
undergo enzymatic hydrolysis to convert its cellulose and
hemicellulose to simple sugars before or after the removal of
the proteins, with the process continuing as described above.
In one embodiment, the recovered ammonia can be recycled
into the AFEX process. In one embodiment, the protein
extractis sold as animal feed or recycled back into hydrolysis.

By disrupting the lignocellulosic structure of the biomass,
proteins appear to more easily diffuse out of the biomass and
into the solution. In one embodiment, sugar and protein yields
are further increased using further integration of pretreat-
ment, extraction, and/or hydrolysis. Removing soluble mate-
rial during extraction can remove hydrolysis inhibitors,
whereas hydrolysis of the cellulose and hemicellulose can
further improve protein recovery. One (1) particular advan-
tage of integration is in the use of a dilute ammonia solution
as an extraction agent. A portion of the ammonia used in the
AFEX process can be diluted and used as the extraction
solution before returning to the ammonia recovery system,
potentially lowering overall raw material requirements.

To summarize, lignocellulosic biomass is an economical
and abundant carbon source which can be converted to vari-
ous fuels and chemicals through fermentation. Under the
current conventional biorefining approach, the production of
a fermentable sugar mixture requires saccharolytic enzymes,
commercial nutrient supplements and detoxification. The
costs associated with these three steps, which are projected at
45% of'the total processing cost, must be reduced to improve
overall economics of cellulosic biofuels.

Ammonia fiber expansion (AFEX), for example, produces
reactive, highly fermentable plant materials by reducing
inhibitory degradation product generation and enriching the
nitrogen content of the pretreated materials. In one embodi-
ment, an integrated cellulosic biorefinery approach is pro-
vided which features ethanol, enzyme and yeast production
based on AFEX-pretreated corn stover.

In a specific embodiment, the nutrient content (protein,
vitamins and trace elements) of the AFEX-corn stover enzy-
matic hydrolysate is at high solids loading (18%). In one
embodiment, a process design is provided which supports
both ethanol and in-house enzyme production using AFEX-
pretreated corn stover. In an additional embodiment, a com-
parative economic modeling study is provided relative to the
conventional approaches. The inventors are therefore the first
to demonstrate a new paradigm in which AFEX-pretreated
biomass, without washing, detoxification or nutrient supple-
mentation, can serve as the source of carbon, nitrogen and
other nutrients for the biorefinery.

Embodiments of the invention will be further described by
reference to the following examples, which are offered to
further illustrate various embodiments of the present inven-
tion. It should be understood, however, that many variations
and modifications may be made while remaining within the
scope of the present invention.

Example 1

The feasibility of extracting proteins from switch grass
harvested in the spring while simultaneously producing sug-
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ars through enzymatic hydrolysis was examined. Conditions
for solid/liquid extraction using aqueous ammonia were opti-
mized and compared to other solvents. Potential process flow
schemes were examined with respect to their sugar and pro-
tein yields before a complete material balance of the final
process was determined. The solution after removal of some
of the proteins and ammonia is the MGS.

Materials and Methods

Feedstock

The feedstock used in this experiment was Alamo switch-
grass obtained from Auburn University and harvested on May
22, 2005. The moisture content of the material was approxi-
mately 9%. All material was ground to less than 2 mm prior to
experiments.

Pretreatment

The AFEX pretreatment was performed in a 300 mL. stain-
less steel pressure vessel. Water was mixed with the switch-
grass to increase the moisture content to 80% dry weight
basis. Glass spheres were added to minimize void space,
thereby reducing the amount of ammonia in the gaseous state.
The lid was bolted shut, and a sample cylinder loaded with 1
(+/-0.04) g NH; per g dry biomass, allowing the ammonia to
be charged into the vessel. The reactor was heated using a 400
W PARR heating mantle, and allowed to stand at 100° C.
(+/-1° C.) for five minutes. The pressure was explosively
released by rapidly turning the exhaust valve. The treated
samples were removed and were placed in a fume hood over-
night to remove residual ammonia.

Hydrolysis

The enzymatic hydrolysis procedure was based upon the
LAP-009 protocol from the National Renewable Energy
Laboratory (19). Samples were hydrolyzed in Erlenmeyer
flasks at 10% solid loading buffered to pH 4.8 by 1M citrate
buffer. Spezyme CP (Genencor; Palo Alto, Calif.) cellulase
was loaded at 15 FPU/g glucan (31 mg protein/g glucan), and
J3-glucosidase (Novozyme 188; Bagsvaerd, Denmark) at 64
pNPGU/g glucan. All samples were incubated at 50° C. with
200 rpm rotation. Sugar concentration after 168 hours was
determined using a Waters High Performance Liquid Chro-
matograph (HPLC) system equipped with a Bio-Rad (Rich-
mond, Calif.) Aminex HPX-87P carbohydrate analysis col-
umn. Degassed HPLC water with a flow rate of 0.6 mL/min
was used as the mobile phase, while the temperature in the
column was kept constant at 85° C.

Protein Extractions

Screening for optimal protein extraction conditions was
done using a Dionex (Sunnyvale, Calif.) ASE 200 Acceler-
ated Solvent Extractor. Extractions were performed at 1500
psi, which reduces the required residence time from 30 to 3
minutes. Extractions were done using 11:1 (w/w) liquid/solid
ratio and two (2) separate extractions per sample. For experi-
ments involving varying the pH, hydrochloric acid was used
to reduce the pH. The pH of the solution was measured after
the extraction was complete. Once the optimal extraction
conditions were obtained, all further extractions were per-
formed in flasks for 30 minutes with a 10:1 liquid/solid ratio
while continuously stirred.

Due to the presence of ammonia nitrogen, both during the
AFEX pretreatment and subsequent extractions, it is impos-
sible to use standard nitrogen analysis methods (the Kje-
hldahl or Dumas methods) to measure total protein content.
Instead, protein concentration was measured using a Pierce
(Rockford, I11.) bichronimic acid colorimetric assay kit using
bovine serum albumin (BSA) as a standard. To reduce the
effects of interfering agents such as ammonium salts, lignin
components, and glucose, the proteins were first precipitated
and resolubilized (20). A 100 ul, 0.15% sodium deoxycholate
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was added to 100 pl, protein solution and allowed to sit for 15
minutes. 200 pl. of 15% trichloroacetic acid solution was
added, and allowed to sit at 2° C. overnight. The mixture was
centrifuged at 13000 RPM for 10 minutes, and the resulting
pellet washed with acetone. The pellet was resolubilized in a
buffer solution containing 0.1M Tris, 2.5M urea, and 4%
SDS. Known concentrations of protein extracts were used to
calibrate the protein recovery of this method.
Composition Analysis

The weight and moisture content of the remaining solid
fraction after each processing step was measured for deter-
mining the mass balance in the system. The composition of
each of these fractions was determined based upon NREL’s
LAP 002 protocol (19). Ash content was determined by heat-
ing 1.5 gof biomass at 575° C. for 24 hours and measuring the
weight loss. Water and ethanol extractives were removed
using a soxhlet extraction. A portion of the extracted biomass
was digested in concentrated (72%) sulfuric acid in a 10:1
liquid:solid ratio at 30° C. for one hour. The solution was
diluted to 4% sulfuric and autoclaved at 120° C. for one hour,
and then analyzed for sugar components using a Bio-Rad
(Richmond, Calif.) Aminex HPX-87H HPLC column using
sulfuric acid as the mobile phase. The acid insoluble lignin
was measured as the remaining solid after hydrolysis less the
ash content in the solid residue.
Results and Discussion

Composition Analysis

The composition of the switchgrass used in this study is
shown in Table 1. Approximately 80% of the mass was
accounted for, with the remaining material being primarily
water soluble components, such as minor organic acids, and
acid soluble lignin. The amount of protein present was lower
than reported in the literature for other strains of switchgrass.
Switchgrass grown as a biomass energy crop and harvested
early in the growing season would likely have a protein con-
tents near 10%, and thus, might be more suitable for inte-
grated protein and sugar processing. The amount of fiber
present was lower than switchgrass harvested at a later date,
which seems to suggest lower sugar yields would also result
from using an earlier cut. However, early cut switchgrass is
less recalcitrant than that harvested in the fall, and thus, the
lower cellulose and hemicellulose content may not be a sig-
nificant factor. The low amount of lignin is a promising sign,
as this implies less interference with hydrolysis as well as
fewer harmful degradation products that could inhibit sugar
production or otherwise be present in the protein product. Ash
content is higher than at later harvests, as expected. It will
likely be necessary to return much of this ash to the land in
order to maintain a high quality soil.

Table 1 shows the composition of Alamo (g/100 g dry
matter) switchgrass. Al-acid insoluble.

TABLE 1
Component % Value
Glucan 264
Xylan 16.4
Arabinan 35
Sucrose 3.4
Protein 73
Al Lignin 10.8
Lipids 73
Ash 4.8
Total 79.9

The essential amino acid profile for switchgrass, along
with literature values for corn and soy (22), is shown in Table
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2. The most promising feature of switchgrass protein is the
high value seen for lysine, an essential amino acid that is often
the first limiting amino acid in poultry diets. High values for
phenylalanine and valine are also seen. Although switchgrass
is somewhat deficient in leucine, arginine, and methionine,
these amino acids are relatively abundant in corn. Thus, a
corn-switchgrass protein diet would balance out these defi-
ciencies, and thus might be a strong alternative to a corn-soy
diet.

Table 2 shows essential amino acid profile of Alamo
switchgrass (SG) compared to literature values for soybean
and corn grain (22). Values are in g amino acid/100 g protein.
Of particular note are lysine, phenylalanine, and valine, of
which switchgrass is rich in, and methionine, of which
switchgrass is somewhat deficient.

TABLE 2
Arg His Ile Leu Lys Met Phe Thr Val
SG 2.1 1.8 3.7 5.6 74 06 91 49 6l
Soy 75 26 49 7.7 6.1 1.6 51 43 5.1
Corn 29 16 43 162 1.6 23 59 31 44

Extraction Optimization

FIG. 1 shows the effect of the temperature of the extraction
on the overall protein and mass yields. Protein yields
increased significantly from 25° C. to 40° C., but further
increases in temperature did not result in major improvements
in protein yield. It is likely that most, if not all, of the proteins
present in the switchgrass are in their natural state, as the
harvesting and drying conditions should not have damaged
them. As such, the mild temperatures should not unfold the
proteins or significantly affect their solubility.

The effect of ammonia concentration on extraction yields
is seen in FIG. 2. Protein yield remains constant from 1-3%
NH4+, but then begins to drop off. This is most likely due to
“salting out” the protein, as the increase in salt concentration
decreases the amount of water available to solubilize the
protein. There does not appear to be any salting in effect,
likely because 1% salt solution is already a sufficient concen-
tration to solubilize the protein. The total mass solubilized
was unaffected by salt concentration, as expected.

The most significant factor in determining protein yields is
the pH of'the system, as seen in FIG. 3. The amount of protein
extracted increased dramatically from a pH of 8 to 10.5 before
leveling off. Similar trends have been seen in other types of
biomass (10-16). Most proteins have an acidic isoelectric
point, the pH at which the protein will have no net charge and
therefore, be the least soluble in a polar medium. Thus,
increasing the pH should increase protein solubility, as dem-
onstrated here. The most alkaline solution also produced a
significant drop in the total mass solubilized, a potentially
useful characteristic. If there is less biomass in solution, it
should be easier to purify the proteins. In addition, the biom-
ass lost during extraction likely includes hemicellulose that
could be hydrolyzed into sugars for ethanol production. Fur-
ther increases in pH would require a stronger base than
ammonia and might degrade the protein, and thus were not
considered.

As seenin FIG. 4, attempts were made to improve yields by
the addition of the nonionic surfactant Tween 80, the ionic
surfactant sodium dodecyl sulfate (SDS), and p-mercaptoet-
hanol, a reducing agent. No significant improvements can be
found by the addition of either surfactant or reducing agent
for the untreated switchgrass. However, adding -mercapto-
ethanol and Tween 80 to AFEX treated grass did increase
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protein removal. This would seem to suggest that the AFEX
process affects the proteins in some manner. This effect might
be through the creation of sulfur-sulfur bonds, which would
then be cleaved by p-mercaptoethanol, or by proteins unfold-
ing and exposing hydrophobic sites, which can be resolubi-
lized with surfactants. The total mass solubilized also
increased with the addition of surfactants, such as Tween 80,
most likely due to interactions between the surfactants and
hydrophobic portions of the biomass.

To determine whether AFEX pretreatment aftects the types
of proteins recovered, the composition of the individual
amino acids was determined, as seen in FIG. 5. Both the
untreated and AFEX treated samples were extracted at the
optimal ammonia conditions without adding surfactant or
reducing agent. Although the amino acid profile for the pro-
teins solubilized during extraction compared to the total pro-
tein from switchgrass is quite different, there is very little
difference between extractions from untreated and AFEX
treated grass. Although AFEX does disrupt the cellular struc-
ture of the biomass, it does not appear to release any other
proteins to be available for extraction. Therefore, it appears
that the structure of the plant is not a major hindrance in
protein recovery, but rather the structure of the protein itself.

Thus, optimal extraction conditions for switchgrass are
approximately 3% aqueous ammonia at a pH of 10 and tem-
perature of 40-50° C. These conditions are in line with those
seen for protein extraction of other types of biomass, and are
the conditions used for all subsequent experiments reported
here. Total protein yields are approximately 40%. However,
AFEX did not appear to significantly improve yields of pro-
tein, unlike previously reported with coastal Bermuda grass
and sodium hydroxide (17).

Integration

Two (2) potential scenarios for integrated sugar and protein
recovery were studied: an extraction immediately after AFEX
and an extraction immediately after hydrolysis. A third
option, extraction prior to AFEX, produced sugar yields far
below the first two scenarios, and so is not presented here. It
is possible that extracting proteins and other material prior to
AFEX changes the effects of AFEX pretreatment. AFEX
produces some organic acids that may inhibit hydrolysis, and
it is possible that a prior extraction could produce more of
these inhibitory acids. Washing the biomass after AFEX
increased the sugar yields to approximately the same level as
hydrolysis without any previous extraction. However, this
process was deemed to require too much water use with no
clear advantage, and thus was not studied in greater depth.

The overall mass balance for integrated sugar and protein
with extraction prior to hydrolysis is seen in FIG. 6A. Final
yields were 240 g glucose, 85.4 g xylose, and 80.7 g protein
per kg dry biomass. Sugar recovery was approximately 74%
of theoretical values, indicating further improvements in
sugar recovery can be made. Approximately 40% of the pro-
tein was found in the extract and 60% in the hydrolysate,
demonstrating that protein must be recovered from both
streams in order to be economical. It should be noted that the
insoluble biomass was washed after hydrolysis to insure all
soluble components were recovered, and thus this may have
acted as a second extraction to remove any remaining proteins
bound to insoluble portions of the biomass. Total protein yield
is approximately 87% of the total, taking into account both
the switchgrass protein and the enzymes used in hydrolysis.
However, virtually no insoluble protein remains in the biom-
ass, thus suggesting that the remaining protein was broken
down and lost at some point during the process.

Approximately 40% of the biomass is solubilized during
the initial protein extraction step. The soluble fraction of the
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biomass after the proteins have been removed can be used as
a MGS. The protein might be concentrated and removed
through ultrafiltration or heat precipitation, while the remain-
ing solution undergoes further processing to provide the
MGS.

Most of the ash was removed from the biomass during the
first extraction step. It is important to remove this ash, as the
final insoluble residue would likely be burned to provide heat
and power for the refinery. The ash content in switchgrass,
particularly potassium, has been shown to cause problems
with slagging in coal/biomass co-firing power plants. The
remaining biomass contains only 3% ash, and thus should
reduce this risk in heat and power generation. It remains to be
seen if the ash in the extraction step can be separated and
returned to the land. The fact that most of the ash is removed
during one unit operation should help keep the costs of any
ash processing step low, as only one stream needs to be
treated.

Approximately 17% of the biomass remains insoluble
throughout this process. There is virtually no protein or ash
still present in this residue, which is mostly composed of
unhydrolyzed fiber and insoluble lignin. This material would
likely be burned for heat and power generation in the refinery,
thus reducing natural gas or coal requirements. The lack of
protein and ash would reduce the presence of NOx formation
and slagging, respectively.

A separate balance, focusing on performing hydrolysis
prior to extraction, is shown in FIG. 6B. Here, sugar yields
were slightly higher, with a total of 356 g compared to 325 g
per kg biomass using the previous approach. This is mainly
due to xylan conversion, indicating that xylan oligomers were
likely extracted along with protein during the initial extrac-
tion step in the previous scenario. However, although
approximately 60% of the protein in the switchgrass was
solubilized during hydrolysis, very little was extracted after-
wards. During hydrolysis, other compounds may be produced
that interfere with the colorimetric analysis, thus increasing
the error involved. This mass balance, however, relies solely
on the individual amino acids rather than a colorimetric
response, and thus is a more accurate representation of actual
protein levels. Subsequent extractions on the final residue did
not release more than a small fraction of the residual proteins,
making it unlikely that further treatments can remove the
residual protein.

The amount of insoluble material remaining is less than
that of the previous scenario, indicating that less heat and
power can be produced. Although less ash is present, there is
still a great deal of protein remaining Protein has lower energy
content than lignin and also its combustion will generate
NOx. Thus, due primarily to the higher protein yields, an
extraction prior to hydrolysis is preferred despite the slightly
lower sugar yields.

Example 2

In this testing, solubles were extracted from AFEX treated
corn stover using water to produce an aqueous extract useful
as a growth medium for the cellulase enzyme-producing fun-
gus 1. reesei.

1) Experimental Details re FIG. 8
Seed Culture Preparation
Media: 2% w/w corn steep liquor+20 g/L. glucose+50 mM

phosphate buffer (adjusted to pH 5.5)

Culture condition: 30° C., 200 rpm agitation, 48 hrincubation
time
Trichoderma Fermentation
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Media (proprietary mixture):

60% v/v of seed culture+5.5% solids loading equivalent of
AFEX-corn stover wash stream+0.5 g of AFEX-corn
stover in 50 mL total volume

Culture Condition: pH 5.5 (adjusted every 24 hr), 30° C., 200
rpm agitation, 96 hr incubation time

Enzymatic Hydrolysis

Solids loading: 1.0% cellulose loading equivalent of AFEX-

corn stover

Hydrolysis mixture: 1:6 diluted of Trichoderma fermentation

broth with varying loading of Accellerase

Hydrolysis condition: pH 4.8, 50° C., 250 rpm agitation, 24 hr
incubation time

Enzyme Quantification
The protein present in the Trichoderma fermentation broth

was run through a FPLC system to separate the saccharolytic

enzymes from the non-saccharolytic enzymes. The protein
content of the fraction, which consisted of saccharolytic
enzymes, was quantified using the BCA protein assay. (See

FIG. 8).

Results and Conclusions
The Trichoderma broth contained 2.71+0.4 g/I. saccharo-

Iytic enzymes. Using this inducer mixture, saccharolytic

enzymes were produced at a high concentration sufficient for

at least 18% solids loading saccharification, which required

an enzyme concentration at in the range of 1.8-2.0 g/L..

Further Details
Three different scenarios (relative to 10 mg/g standard

enzyme mix: Accelerase+Multifect Xylanase+Multifect Pec-

tinase) were tested:

1) If only soluble sugars are needed, no exogenous enzyme is
needed, as the in-house enzyme is sufficient as it is.

2) If monomers and cellobiose are needed (some non-saccha-
rolytic organism can uptake cellobiose), add 1.0 mg/g of
exogenous enzyme.

3) If only monomers are needed, add about 1.5-2.0 mg/g of
exogenous enzyme.

(2) Experimental Details re FIG. 9

Seed Culture Preparation

Media: 2% w/w corn steep liquor+20 g/L. glucose+50 mM
phosphate buffer (adjusted to pH 5.5)

Culture condition: 30° C., 200 rpm agitation, 48 hrincubation
time

Trichoderma Fermentation

Media (proprietary mixture):

60% v/v of seed culture+5.5% solids loading equivalent of
AFEX-corn stover wash stream

Media (lactose): 60% v/v of seed culture+5.4 g/LL lactose

Culture Condition: pH 5.5 (adjusted every 24 hr), 30° C., 200
rpm agitation, 96 hr incubation time

Note: The proprietary mixture contained 5.4 g/I. of sugars.

Enzymatic Hydrolysis

Solids loading: 1.0% cellulose loading equivalent of AFEX-
corn stover

Hydrolysis mixture: 1:6 diluted of Trichoderma fermentation
broth with varying loading of Accellerase

Hydrolysis condition: pH 4.8, 50° C., 250 rpm agitation, 24 hr
incubation time

See FIG. 9, which shows a comparison of two induction
mixtures in terms of their effectiveness on enzyme produc-
tion and hydrolysis yield.

Conclusion
The proprietary mixtures are 2.5 (for glucose) to 7 times

(for xylose) more potent than that from lactose.

See FIG. 10 which shows a proposed integrated cellulosic

ethanol production system with in-house enzyme production
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utilizing biomass as the exclusive source for carbohydrates, in
one embodiment of the invention.

The results show that the estimated cost of enzymes to
produce ahighly fermentable sugar mixture can be reduced to
the point where the enzyme cost is no longer the dominant
cost of biofuel production.

See also the following:

FIGS. 11A and 11B show (A) 6.0% cellulose loading sol-
ids and loading enzymatic hydrolysis and (B) AFEX and
enzymatic hydrolysis in embodiments of the present inven-
tion.

FIG. 12 shows a chart of total protein and free AA for
various constituents in embodiments of the present invention.

FIG. 13 shows trace element and vitamin content of AFEX -
corn stover hydrolysate at 18% solids loading in an embodi-
ment of the present invention.

FIGS. 14A and 14B show (A) a core bioprocessing and
bioconversions which includes enzyme production and (B) a
subsequent fermentation step in embodiments of the present
invention. See Table 3 below for additional details on FIGS.
14A and 14B.

TABLE 3

Details on Streams in FIGS. 14A and 14B

Stream Description
1 Untreated Corn Stover
2 AFEX-pretreated corn stover (AFEX-CS);
3 AFEX-pretreated corn stover (AFEX-CS);
10% of the total output AFEX-CS by weight
4 Washed AFEX-CS; Moisture Content at 75%
5 Water extract of AFEX-CS at 18% solids loading
6 Saccharolytic enzyme from Trichoderma reesei
fermentation
7 Enzymatic hydrolysate in slurry
8 Moist residual solids
9 Liquid enzymatic hydrolysate
10 Split Stream of liquid enzymatic hydrolysate;
20% of Stream 9 by volume
11& 12 Diluted AFEX-CS Hydrolysate;
Sugar concentration at 30% that of Stream 9
13 Native or recombinant Saccharomyces cerevisiae
424A(LNH-ST)
14 Beer stream at 4% w/v ethanol
15 Recombinant cell recycle (ethanol fermentation) for 1 hr
16 Recombinant cell recycle after preincubation
in AFEX-CS hydrolysate
17 Yeast purge stream

FIG. 15 shows in-house enzyme production using AFEX-
pretreated corn stover in an embodiment of the present inven-
tion.

FIG. 16 provides relevant conclusions pertinent to one or
more of FIGS. 11A,11B, 12,13, 14A, 14B and 15 in embodi-
ment of the present invention.

FIG. 17A shows a first portion of an exemplary fermenta-
tion process in an embodiment of the present invention.

FIG. 17B shows a second portion of an exemplary fermen-
tation process in an embodiment of the present invention.

FIG. 18 shows a graph of xylose concentration over time in
embodiments of the present invention.

FIG. 19 provides relevant conclusions pertinent to one or
more of FIGS. 17A, 17B and 18 in embodiments of the
present invention.

FIG. 20A shows a comparison cost/revenue study in an
embodiment of the present invention.

FIG. 20B shows a sensitivity analysis in an embodiment of
the present invention.
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Additional Conclusions

Nutrients inherently from corn stover are sufficient to sup-
port microbial growth for fermentation. Exogenous nutrients
are not required.

85% of the carbohydrate was solubilized at 18% solids
loading. The sugar concentration could produce ethanol at 55
g/L.

In-house enzyme production reduced the exogenous
enzyme requirement from 10 mg/g CS to 1.0 mg/g CS (10
fold reduction). The overall cost of enzyme reduced primarily
due to the ability to utilize sugars (both monomers and oli-
gomers) from AFEX-CS for enzyme production.

High cell density fermentation can be conducted without
the need for high fresh cell inoculum due to the high recycla-
bility of yeast cells in the hydrolysate.

Compared to base case (Eggeman and Elander, 2005), the
total profit is expected to increase from 1.2 to 35.2 USD/Mg
feedstock largely due to the value of non-GM yeast cells and
reduction in enzyme cost.
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Example 3
Prophetic

Additional testing with other biomass materials, such as
switch grass and poplar will be performed. It is expected that
the aqueous extract will stimulate the growth and perfor-
mance of potential consolidated bioprocessing organisms
such as Clostridium thermocellum.

Conclusion

The various embodiments described herein provide for
developing microbial growth stimulants from mildly alkaline
aqueous extracts from AFEX treated biomass. In one embodi-
ment, a method comprising extracting solubles from pre-
treated lignocellulosic biomass (e.g., corn stover) using water
and an aqueous extract as a growth medium for the cellulase
enzyme-producing fungus (7. reesei), is provided. In one
embodiment, the pretreated lignocellulosic biomass is
ammonia fiber expansion pretreated lignocellulosic biomass.

The experimental results show that the integrated recovery
of sugar and protein from early cut switchgrass appears to be
a feasible approach to a cellulosic biorefinery. Ammonium
hydroxide has been shown to be an effective solvent for
removing proteins from the biomass, thus opening up possi-
bilities of integrating with AFEX pretreatment or providing a
nitrogen source during fermentation. Integrating sugar and
protein production will cause some tradeoffs, as producing
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maximum sugar will result in a lower protein recovery and
vice versa. However, there are possibilities for overcoming
these obstacles.

Further integration of these two (2) steps is also possible. If
the loss in sugar yields is due solely to oligomer loss, then
using the protein extract as the hydrolysate liquid after sepa-
rating the proteins would reduce these losses. This would
require neutralizing the extract, but would decrease overall
water use and thereby improve the environmental and eco-
nomic performance of the refinery. In addition, the fact that
there are multiple protein streams may allow further special-
ization. If the cellulase enzymes are still active after hydroly-
sis, it may be possible to concentrate and recycle them, again
reducing operating costs.

Embodiments of the invention described herein provide for
collecting the protein content found within grasses and
optionally as those proteins added during cellulose and hemi-
cellulose hydrolysis using dilute ammonium hydroxide as the
solvent. These proteins are captured in two steps: the initial
hydrolysis of the carbohydrates and a separate extraction step
where the order is dictated by economics. Thus, proteins are
recovered from the hydrolysate before or after the carbohy-
drates are fermented. The remaining biomass after fermenta-
tion then undergoes a simulated crosstlow extraction to
remove any remaining proteins.

This is the first method to use ammonium hydroxide as a
solvent, which has two (2) advantages over the previous
approaches. Firstly, any residual ammonia remaining on the
final protein product used as a feed for ruminants provides
extra nitrogen in its diet, thereby improving the overall crude
protein content of the final product. Other alkaline solutions
could provide a negative effect due to the presence of
unwanted ions, such as sodium. Secondly, ammonia is also
used during the Ammonia Fiber Expansion (AFEX) pretreat-
ment process. Thus, the ammonia used for extraction can be
taken from the ammonia recovery system in place for the
AFEX process, and then recycled back into AFEX after con-
centrating the proteins. Thus, using ammonia for extraction
eliminates the need for an additional reagent.

The process can remove over 99% of the proteins from the
solid biomass, indicating a very high recovery is possible.
Extracting proteins from untreated switchgrass provides
yields of approximately 35%. By using a separate extraction
step after hydrolysis, it is possible to recover not only the
proteins still remaining within the biomass, but also those that
are adsorbed onto the biomass surface. In addition, the dis-
ruption of the biomass’ structure during the AFEX pretreat-
ment process and the carbohydrate hydrolysis improves the
diffusion of proteins from the solid into solution. No other
process has focused on combining protein extraction with
AFEX and carbohydrate hydrolysis.

With two (2) separate protein streams, there exists the
possibility that they can be used for separate purposes. For
example, the stream containing the enzymes required for
hydrolysis can be recycled, thus reducing the overall cost of
carbohydrate production. The other proteins within that
stream would bind to the lignin present, deactivating those
sites and preventing the enzymes from binding to them. This
could potentially increase the rate of hydrolysis, further
reducing the cost to the refinery.

A simulated crossflow extraction is used to increase the
overall amount of proteins extracted while still keeping sol-
vent use low. The biomass is put through a number of extrac-
tions while still maintaining a small solvent use by using the
same solvent for subsequent extractions, as only the final
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extraction uses fresh solvent. This not only reduces the costof
extraction, but also the costs to concentrate the proteins
downstream.

In one embodiment, this process is useful for a cellulosic
ethanol production facility, as it could provide a valuable
co-product to ethanol. These proteins can be sold as animal
feed, serving as a substitute for soy protein. In addition, it is
possible to apply this method to transgenic biomass engi-
neered to produce specific industrial or pharmaceutical
enzymes, as described in U.S. application Ser. No. 11/489,
234, filed Jul. 19,2006, and U.S. Pat. No. 7,049,485 which are
commonly owned by the Assignee and which are incorpo-
rated herein by reference in their entireties.

This method can be implemented in line with cellulose
hydrolysis. No changes would be necessary for either the
AFEX process or the hydrolysis reaction chamber. The solids
and liquids must be separated after hydrolysis, either through
centrifugation or standard filtration. The liquid stream then
can pass through a crossflow ultrafiltration system, allowing
the sugars and most of the water to pass through, leaving
behind a concentrated protein product.

A simulated crossflow extraction would need to be imple-
mented for the remaining solid material. The solids would
pass through three (3) separate extraction vessels, where they
would be mixed with the incoming ammonium hydroxide.
The solids and liquids will need to be separated between each
step, again through either centrifugation or filtration. After
the solvent undergoes its final extraction step, it must also be
concentrated. It can be combined with the liquid stream from
the hydrolysate or be concentrated through a separate cross-
flow ultrafiltration step.

The remaining ammonium hydroxide solution can then be
recycled into the AFEX ammonia recovery system. It may be
necessary to remove any organic matter still remaining in
solution before this step. A simple distillation column can
remove the volatile ammonia, concentrating and separating it
from the solubilized biomass. This stream can then be recov-
ered, while the remaining liquid can be sent elsewhere for
waste treatment or further processing.

Alternative embodiments are also available, depending on
how integrated one wishes this process to be. Rather than
recycling the ammonia into the AFEX recovery process, a
separate recycle stream for the extraction process can be used.
If the extraction is performed prior to hydrolysis, the ammo-
nium hydroxide solution can also be neutralized and used as
the hydrolysate media as well. A standard one or two step
extraction process can replace the simulated crossflow extrac-
tion.

Cellulosic biomass contains large amounts of structural
carbohydrates (cellulose, hemicellulose, etc.) that might pro-
vide much less expensive sugars for fermentation or non-
biological transformation to a variety of products or as
improved animal feeds. Such biomass also contains smaller
but nonetheless significant amounts of proteins and other
solubles such as simple sugars, lipids and minerals. These less
abundant components can be separated from the structural
carbohydrates as part of a larger “biorefining” process.
Recovering these soluble components during biorefining
reduces the amount of waste that must be handled by the
biorefinery and would also help provide additional valuable
products that could improve the economic feasibility of the
overall biorefining process. In addition, plants may be geneti-
cally engineered to produce various molecules that might be
separated and recovered from herbaceous biomass in this
way.

Embodiments described herein allow for extraction and
utilization of virtually all solubles in herbaceous biomass, not
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just protein. The embodiments can further utilize substan-
tially all types of herbaceous biomass, including both wet and
dry biomass, not just freshly harvested materials; (3) the
various embodiments integrate easily and naturally into a
larger process using concentrated ammonia to treat biomass
to enhance the conversion of cellulose and hemicellulose to
sugars; (4) the conditions of solubles recovery (pH and tem-
perature) can preserve much of the value of fragile molecules,
including proteins; and (5) the ability to separate and upgrade
these solubles to make salable products avoids the expense
and other difficulties associated with treating them as wastes,
and may significantly improve the economic “bottom line” of
the overall process.

Markets that might use the various embodiments of this
invention include, but are not limited to: (1) the U.S. chemical
industry which is beginning to move away from petroleum as
a source of chemical feedstocks and is interested in inexpen-
sive sugars as platform chemicals for new, sustainable pro-
cesses; (2) the fermentation industry, especially the fuel etha-
nol production industry which is also interested in
inexpensive sugars from plant biomass; (3) the animal feed
industry which is strongly affected by the cost of protein and
other nutrients for making animal feeds of various kinds; and
(4) the fertilizer industry that may utilize the minerals that
will result from solubles extraction.

In one embodiment, the steps are generally:

(1) Following pretreatment of herbaceous biomass with
concentrated ammonia: water mixtures in an AFEX process
to disrupt the chemical and physical structure of biomass.

(2) Soak the pretreated biomass in warm (up to 80° C.),
alkaline (up to pH 10) aqueous solutions of ammonium
hydroxide in water, using approximately 5-15 mass units of
water per mass of dry biomass.

(3) Allow sufficient time for the desired level of extraction
to occur under these conditions, but less than 1 hour.

(4) Using appropriate filtration equipment, remove the lig-
uid from the solids.

(5) Acidity the liquid to about pH 5.0 or thereabouts and/or
heat the liquid stream to precipitate proteins and other less
soluble components.

(6) Recover and separate these proteins and associated
solubles by appropriate combinations of washing, drying and
ultrafiltration.

(7) Treat the residual liquid remaining after protein pre-
cipitation or separation to prepare it to serve as a microbial
growth stimulant.

(8) Enzymatically hydrolyze the residual solids from
which these proteins were extracted to release simple sugars
for fermentation and treat the resulting liquid to recover addi-
tional protein and other non-sugar solubles if the concentra-
tions of these species warrant it. Efficient, mature biomass
refining to fuels and chemicals requires complete utilization
of'all components of the biomass, including protein and other
solubles. These additional products help improve the overall
economics of biomass refining and avoid the costs associated
with treating these components as wastes if they are not
recovered in useful products.

Lignocellulosic biomass, especially herbaceous biomass,
contains significant amounts of protein and other solubles.
This invention addresses the opportunity to integrate recovery
of solubles such as protein in an overall biomass refining
system. Warm solutions of ammonia and water are used to
extract this protein and other solubles from biomass. The
extracted species are recovered and sold as additional prod-
ucts from the biorefinery, thereby increasing profits and
reducing the amount of waste that would otherwise be treated.
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In one embodiment, the process particularly enables pro-
duction of Microbial Growth Stimulants (MGSs) as follows:

After an AFEX treatment, extract protein rich solutions
from herbaceous biomass at slightly alkaline pH (pH 7 to 10)
using ammonia at moderate temperatures (50-80° C.).

(1) Recover ammonia from this protein rich solution to the
extent desired via stripping with inert gases (for example,
nitrogen), heating, etc. The objective is to leave ammonia in
the solution at the level desired in the ultimate MGS product.

(2) Recover most of the protein from this solution by
appropriate combinations of heating and pH adjustment.
Heating may be accomplished, for example, by direct injec-
tion of steam into the extracted liquid while pH adjustment
may be accomplished by bubbling carbon dioxide (an acid
gas) through the liquid or by addition of a mineral acid such
as sulfuric acid.

(3) Depending on the ultimate use and desired purity of the
protein product, proteins may also be recovered by membrane
separation, for example by ultrafiltration or reverse osmosis
techniques.

(4) The liquid remaining following protein recovery is the
MGS product. It can be used directly in fermentation pro-
cesses within the same plant in which the MGS is produced,
as a liquid supplement to animal feeds for animals fed inclose
proximity to the plant, or it can be concentrated by multieffect
evaporation and sold in more distant feed and fermentation
markets. Sufficiently inexpensive sugars from renewable
plant biomass could become the basis of'a very large chemical
and fuels industry, replacing or substituting for petroleum and
other fossil feedstocks. Much of this renewable carbon based
industry would use microbial fermentation as the preferred
means of generating fuels and chemicals from plant biomass.
Microbial Growth Stimulants (MGSs) such as Corn Steep
Liquor (CSL) are widely used to increase the rate and yield of
many fermentation processes. If a very large scale fermenta-
tion industry for fuels and chemicals from plant matter devel-
ops in the future, supplies of CSL will not be adequate to the
need and prices will be excessive. A new generation of Micro-
bial Growth Stimulants (MGS) is described based on liquid
streams remaining after protein is extracted and recovered
from herbaceous biomass such as grasses and hays. These
MGS:s are rich in protein, non protein nitrogen, soluble sug-
ars, vitamins, and minerals.
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Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement that is calculated to
achieve the same purpose may be substituted for the specific
embodiment shown. This application is intended to cover any
adaptations or variations of the present subject matter. There-
fore, it is manifestly intended that embodiments of this inven-
tion be limited only by the claims and the equivalents thereof.

What is claimed is:

1. A method for producing a microbial growth stimulant
solution from a lignocellulosic plant biomass comprising:

providing a harvested lignocellulosic plant biomass;

treating the plant biomass with an Ammonia Fiber
Explosion (AFEX) process to provide a treated plant
biomass;

soaking the treated plant biomass in an alkaline aqueous

solution of ammonium hydroxide at 25° to 70° C. to

provide a soaked plant biomass in the solution;

extracting the solution from the soaked plant biomass to
produce an extracted solution;

separating at least some of the proteins and ammonia from

the extracted solution; and
retaining the extracted solution as the microbial growth
stimulant solution.

2. The method of claim 1 wherein the plant is a monocot.

3. The method of claim 2 wherein the monocot is switch-
grass, rice or maize.

4. The method of claim 1 wherein the plant biomass is
switchgrass.

5. The method of claim 1 wherein a pH in the soaking step
is above about 8.
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6. The method of claim 1 wherein the proteins are separated
from the extracted solution by precipitation or ultrafiltration.

7. The method of claim 1 wherein the separating step
occurs after a hydrolysis step.

8. The method of claim 1 wherein the separating step
occurs before a hydrolysis step.

9. The method of claim 1 wherein the aqueous alkaline
ammonium hydroxide solution comprises up to about 3% by
weight NH,OH.

10. The method of claim 9 wherein the aqueous alkaline
ammonium hydroxide solution has a pH greater than about 8.

11. The method of claim 1 wherein no nutrients are added
to the plant biomass.

12. The method of claim 1 wherein the extracted solution is
extracted with water.

10

15

24
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of AFEX-Corn Stover Hydrolysate at 18% Solids Loading
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Main Conclusions

» AFEX-C5 oligomers are 2.5-7 times more potent
than lactose {(compared on the same welght basis)

» Total soluble sugar yield was comparable to that of
standard enzyme mixture (Accellerase Multifect
Peclinase and Multifect Xylanase) at 10 mg/g CS

» To archive similar moneric sugar yield, 1.5 mg/g €5
of Accellerase is needed

» The enzyme concentration of the Trichoderma broth
is sufficient to support effective sugar solubilization at
6.0% glucan loading (~18% soligs loading)

FIGURE 16
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FIGURE 18

Main Conclusions:

= Native 5. cerevisiae cells (Non-Genetically Modified)
were produced as a coproduct for the biorefinery.

» Recombinant S. cerevisiae can be recycled at least
for 4 cycles without the need for new cells. This
facilitates cost-effective fermentation high cell density,

= Ethanol at 40 g/l was achieved in the end of the
fermentations

FIGURE 19
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CERTIFICATE OF CORRECTION (continued)
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